30 research outputs found

    Identification of putative nuclear receptors and steroidogenic enzymes in Murray-Darling rainbowfish (Melanotaenia fluviatilis) using RNA-Seq and de novo transcriptome assembly

    Get PDF
    Murray-Darling rainbowfish (Melanotaenia fluviatilis [Castelnau, 1878]; Atheriniformes: Melanotaeniidae) is a small-bodied teleost currently under development in Australasia as a test species for aquatic toxicological studies. To date, efforts towards the development of molecular biomarkers of contaminant exposure have been hindered by the lack of available sequence data. To address this, we sequenced messenger RNA from brain, liver and gonads of mature male and female fish and generated a high-quality draft transcriptome using a de novo assembly approach. 149,742 clusters of putative transcripts were obtained, encompassing 43,841 non-redundant protein-coding regions. Deduced amino acid sequences were annotated by functional inference based on similarity with sequences from manually curated protein sequence databases. The draft assembly contained protein-coding regions homologous to 95.7% of the complete cohort of predicted proteins from the taxonomically related species, Oryzias latipes (Japanese medaka). The mean length of rainbowfish protein-coding sequences relative to their medaka homologues was 92.1%, indicating that despite the limited number of tissues sampled a large proportion of the total expected number of protein-coding genes was captured in the study. Because of our interest in the effects of environmental contaminants on endocrine pathways, we manually curated subsets of coding regions for putative nuclear receptors and steroidogenic enzymes in the rainbowfish transcriptome, revealing 61 candidate nuclear receptors encompassing all known subfamilies, and 41 putative steroidogenic enzymes representing all major steroidogenic enzymes occurring in teleosts. The transcriptome presented here will be a valuable resource for researchers interested in biomarker development, protein structure and function, and contaminant-response genomics in Murray-Darling rainbowfish

    Prior exposure of Arabidopsis seedlings to mechanical stress heightens jasmonic acid-mediated defense against necrotrophic pathogens

    Get PDF
    Background: Prolonged mechanical stress (MS) causes thigmomorphogenesis, a stress acclimation response associated with increased disease resistance. What remains unclear is if; 1) plants pre-exposed to a short period of repetitive MS can prime defence responses upon subsequent challenge with necrotrophic pathogens, 2) MS mediates plant immunity via jasmonic acid (JA) signalling, and 3) a short period of repetitive MS can cause long-term changes in gene expression resembling a stress-induced memory. To address these points, 10-days old juvenile Arabidopsis seedlings were mechanically stressed for 7-days using a soft brush and subsequently challenged with the necrotrophic pathogens, Alternaria brassicicola, and Botrytis cinerea. Here we assessed how MS impacted structural cell wall appositions, disease symptoms and altered gene expression in response to infection. Results: The MS-treated plants exhibited enhanced cell wall appositions and jasmonic acid (JA) accumulation that correlated with a reduction in disease progression compared to unstressed plants. The expression of genes involved in JA signalling, callose deposition, peroxidase and phytoalexin biosynthesis and reactive oxygen species detoxification were hyper-induced 4-days post-infection in MS-treated plants. The loss-of-function in JA signalling mediated by the JA-insensitive coronatine-insensitive 1 (coi1) mutant impaired the hyper-induction of defense gene expression and promoted pathogen proliferation in MS-treated plants subject to infection. The basal expression level of PATHOGENESIS-RELATED GENE 1 and PLANT DEFENSIN 1.2 defense marker genes were constitutively upregulated in rosette leaves for 5-days post-MS, as well as in naïve cauline leaves that differentiated from the inflorescence meristem well after ceasing MS. Conclusion: This study reveals that exposure of juvenile Arabidopsis plants to a short repetitive period of MS can alter gene expression and prime plant resistance upon subsequent challenge with necrotrophic pathogens via the JA-mediated COI1 signalling pathway. MS may facilitate a stress-induced memory to modulate the plant’s response to future stress encounters. These data advance our understanding of how MS primes plant immunity against necrotrophic pathogens and how that could be utilised in sustainable agricultural practices

    Assessing differences between clinical isolates of Aspergillus fumigatus from cases of proven invasive aspergillosis and colonizing isolates with respect to phenotype (virulence in Tenebrio molitor larvae) and genotype

    Get PDF
    The fungus Aspergillus fumigatus, the cause of invasive aspergillosis (IA), is a serious risk to transplant patients and those with respiratory diseases. Host immune suppression is considered the most important factor for the development of IA. Less is known about the importance of fungal virulence in the development of IA including the significance of variation between isolates. In this study, isolates of A. fumigatus from cases diagnosed as having proven IA or colonisation (no evidence of IA) were compared in assays to measure isolate virulence. These assays included the measurement of radial growth and protease production on agar, sensitivity to UV light and oxidative stressors, and virulence in Tenebrio molitor (mealworm) larvae. These assays did not reveal obvious differences in virulence between the two groups of isolates; this provided the impetus to conduct genomic analysis. Whole genome sequencing and analysis did not allow grouping into coloniser or IA isolates. However, focused analysis of single nucleotide polymorphisms revealed variation in three putative genes: AFUA_5G09420 (ccg-8), AFUA_4G00330, and AFUA_4G00350. These are known to be responsive to azole exposure, and ccg-8 deletion leads to azole hypersensitivity in other fungi. A. fumigatus virulence is challenging, but the findings of this study indicate that further research into the response to oxidative stress and azole exposure are required to understand the development of IA

    Separating two tightly linked species-defining phenotypes in Bactrocera with hybrid recombinant analysis

    Get PDF
    Background: Bactrocera tryoni and Bactrocera neohumeralis mate asynchronously; the former mates exclusively around dusk while the latter mates during the day. The two species also differ in the colour of the post-pronotal lobe (callus), which is predominantly yellow in B. tryoni and brown in B. neohumeralis. We have examined the genetic relationship between the two characters in hybrids, backcrosses and multigeneration hybrid progeny. Results: Our analysis of the mating time of the parental species revealed that while B. tryoni mate exclusively at dusk, B. neohumeralis females pair with B. neohumeralis males during the day and with B. tryoni males at dusk. We found considerable variance in mating time and callus colour among hybrid backcross individuals of both sexes but there was a strong although not invariant trend for callus colour to co-segregate with mating time in both sexes. To genetically separate these two phenotypes we allowed the interspecific F1 hybrids to propagate for 25 generations (F25) without selection for mating time or callus colour, finding that the advanced hybrid population had moved towards B. tryoni phenotypes for both traits. Selection for day mating in replicate lines at F25 resulted in significant phenotypic shifts in both traits towards B. neohumeralis phenotypes in F26. However, we were unable to completely recover the mating time profile of B. neohumeralis and relaxation of selection for day mating led to a shift back towards dusk mating, but not yellow callus colour, by F35. Conclusion: We conclude that the inheritance of the two major species-defining traits is separable but tightly linked and involves more than one gene in each case. It also appears that laboratory conditions select for the B. tryoni phenotypes for mating time. We discuss our findings in relation to speciation theory and the likely effects of domestication during the generation of mass release strains for sterile insect control programmes

    De novo assembly of the olive fruit fly (Bactrocera oleae) genome with linked-reads and long-read technologies minimizes gaps and provides exceptional Y chromosome assembly

    Get PDF
    Background: The olive fruit fly, Bactrocera oleae, is the most important pest in the olive fruit agribusiness industry. This is because female flies lay their eggs in the unripe fruits and upon hatching the larvae feed on the fruits thus destroying them. The lack of a high-quality genome and other genomic and transcriptomic data has hindered progress in understanding the fly’s biology and proposing alternative control methods to pesticide use. Results: Genomic DNA was sequenced from male and female Demokritos strain flies, maintained in the laboratory for over 45 years. We used short-, mate-pair-, and long-read sequencing technologies to generate a combined male-female genome assembly (GenBank accession GCA_001188975.2). Genomic DNA sequencing from male insects using 10x Genomics linked-reads technology followed by mate-pair and long-read scaffolding and gap-closing generated a highly contiguous 489 Mb genome with a scaffold N50 of 4.69 Mb and L50 of 30 scaffolds (GenBank accession GCA_001188975.4). RNA-seq data generated from 12 tissues and/or developmental stages allowed for genome annotation. Short reads from both males and females and the chromosome quotient method enabled identification of Y-chromosome scaffolds which were extensively validated by PCR. Conclusions: The high-quality genome generated represents a critical tool in olive fruit fly research. We provide an extensive RNA-seq data set, and genome annotation, critical towards gaining an insight into the biology of the olive fruit fly. In addition, elucidation of Y-chromosome sequences will advance our understanding of the Y-chromosome’s organization, function and evolution and is poised to provide avenues for sterile insect technique approaches

    The life cycle of a genome project : perspectives and guidelines inspired by insect genome projects

    No full text
    Many research programs on non-model species biology have been empowered by genomics. In turn, genomics is underpinned by a reference sequence and ancillary information created by so-called “genome projects”. The most reliable genome projects are the ones created as part of an active research program and designed to address specific questions but their life extends past publication. In this opinion paper I outline four key insights that have facilitated maintaining genomic communities: the key role of computational capability, the iterative process of building genomic resources, the value of community participation and the importance of manual curation. Taken together, these ideas can and do ensure the longevity of genome projects and the growing non-model species community can use them to focus a discussion with regards to its future genomic infrastructure

    A roadmap for whitefly genomics research : lessons from previous insect genome projects

    No full text
    Due to evolving molecular and informatics technologies, modern genome sequencing projects have more different characteristics than what most biologists have become accustomed to during the capillary-based sequencing era. In this paper, we explore the characteristics that made past insect genome projects successful and place them in the context of next-generation sequencing. By taking into account the intricacies of whitefly biology and the community, we present a roadmap for whitefly-omics, which focuses on the formation of an international consortium, deployment of informatics platforms and realistic generation of reference sequence data

    Butterfly genomics eclosing

    No full text
    Technological and conceptual advances of the last decade have led to an explosion of genomic data and the emergence of new research avenues. Evolutionary and ecological functional genomics, with its focus on the genes that affect ecological success and adaptation in natural populations, benefits immensely from a phylogenetically widespread sampling of biological patterns and processes. Among those organisms outside established model systems, butterflies offer exceptional opportunities for multidisciplinary research on the processes generating and maintaining variation in ecologically relevant traits. Here we highlight research on wing color pattern variation in two groups of Nymphalid butterflies, the African species Bicyclus anynana (subfamily Satyrinae) and species of the South American genus Heliconius (subfamily Heliconiinae), which are emerging as important systems for studying the nature and origins of functional diversity. Growing genomic resources including genomic and cDNA libraries, dense genetic maps, high-density gene arrays, and genetic transformation techniques are extending current gene mapping and expression profiling analysis and enabling the next generation of research questions linking genes, development, form, and fitness. Efforts to develop such resources in Bicyclus and Heliconius underscore the general challenges facing the larger research community and highlight the need for a community-wide effort to extend ongoing functional genomic research on butterflies

    Heliconius wing patterns : an evo-devo model for understanding phenotypic diversity

    No full text
    Evolutionary Developmental Biology aims for a mechanistic understanding of phenotypic diversity, and present knowledge is largely based on gene expression and interaction patterns from a small number of well-known model organisms. However, our understanding of biological diversification depends on our ability to pinpoint the causes of natural variation at a micro-evolutionary level, and therefore requires the isolation of genetic and developmental variation in a controlled genetic background. The colour patterns of Heliconius butterflies (Nymphalidae: Heliconiinae) provide a rich suite of naturally occurring variants with striking phenotypic diversity and multiple taxonomic levels of variation. Diversification in the genus is well known for its dramatic colour-pattern divergence between races or closely related species, and for MĂĽllerian mimicry convergence between distantly related species, providing a unique system to study the development basis of colour-pattern evolution. A long history of genetic studies has showed that pattern variation is based on allelic combinations at a surprisingly small number of loci, and recent developmental evidence suggests that pattern development in Heliconius is different from the eyespot determination of other butterflies. Fine-scale genetic mapping studies have shown that a shared toolkit of genes is used to produce both convergent and divergent phenotypes. These exciting results and the development of new genomic resources make Heliconius a very promising evo-devo model for the study of adaptive change

    Identification and characterization of three chemosensory receptor families in the cotton bollworm Helicoverpa armigera

    Get PDF
    Background: Chemosensory receptors including olfactory receptors (ORs), gustatory receptors (GRs) and ionotropic receptors (IRs) play a central role in sensing chemical signals and guiding insect behaviours, and are potential target genes in insect pest control. The cotton bollworm Helicoverpa armigera is one of the most destructive pest species that can feed on over 200 different plant species. This diversity of host plants is likely linked to a complex chemosensory system. Here we built on previous work to characterize crucial chemosensory tissues linked to environmental interactions including larval antennae, larval mouthparts and larval fat bodies, as well as male and female adult heads, male and female adult tarsi, and female abdomens. Results: Using transcriptome sequencing, Trinity RNA-seq assemblies and extensive manual curation, we identified a total of 91 candidate chemosensory receptors (60 candidate ORs, 10 GRs and 21 IRs). Thirty-five of these candidates present full-length transcripts. First, we performed in silico differential expression analysis on different sequenced tissues. Further, we created extensive expression profiles using reverse transcription (RT)-PCR on a variety of adult and larval stages. We found that the expression profile of HarmOR51 was limited to adult male antenna suggesting a role in mating that was further supported by a phylogenetic analysis clustering it into the pheromone receptor clade. HarmOR51 in calcium imaging analysis did not show responses to either of the two H. armigera sex pheromone components (Z9-16:Ald or Z11-16:Ald) inviting a future detailed study. In addition, we found four novel HarmORs (OR1, 53, 54 and 58) that appeared to be larvae-antennal specific. Finally, our expression profiling showed that four “divergent” HarmIRs (IR2, 7d.1, 7d.2 and 7d.3) were expressed in both adult and larval antennae, suggesting a functional divergence from their Drosophila homologues. Conclusions: This study explored three chemoreceptor superfamily genes using a curated transcriptomic approach coupled with extensive expression profiling and a more limited functional characterization. Our results have now provided an extensive resource for investigating the chemoreceptor complement of this insect pest, and meanwhile allow for targeted experiments to identify potential molecular targets for pest control and to investigate insect-plant interactions
    corecore